Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway.
نویسندگان
چکیده
While there is strong evidence for hydraulic redistribution (HR) of soil water by trees, it is not known if common mycorrhizal networks (CMN) can facilitate HR from mature trees to seedlings under field conditions. Ponderosa pine (Pinus ponderosa) seedlings were planted into root-excluding 61-microm mesh barrier chambers buried in an old-growth pine forest. After 2 yr, several mature trees were cut and water enriched in D(2)O and acid fuchsin dye was applied to the stumps. Fine roots and mycorrhizal root tips of source trees became heavily dyed, indicating reverse sap flow in root xylem transported water from stems throughout root systems to the root hyphal mantle that interfaces with CMN. Within 3 d, D(2)O was found in mesh-chamber seedling foliage > 1 m from source trees; after 3 wk, eight of 10 mesh-chamber seedling stem samples were significantly enriched above background levels. Average mesh-chamber enrichment was 1.8 x greater than that for two seedlings for which the connections to CMN were broken by trenching before D(2)O application. Even small amounts of water provided to mycorrhizas by HR may maintain hyphal viability and facilitate nutrient uptake under drying conditions, which may provide an advantage to seedlings hydraulically linked by CMN to large trees.
منابع مشابه
Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.
The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecosystem. The fate of deuterated wat...
متن کاملInteractive effects of elevated CO2 and temperature on water transport inponderosa pine.
Many studies report that water flux through trees declines in response to elevated CO(2), but this response may be modified by exposure to increased temperatures. To determine whether elevated CO(2) and temperature interact to affect hydraulic conductivity, we grew ponderosa pine seedlings for 24 wk in growth chambers with one of four atmospheric CO(2) concentrations (350, 550, 750, and 1100 pp...
متن کاملRhizopogon spore bank communities within and among California pine forests.
In this study we examine the distribution of Rhizopogon species in spore banks from five California pine forests. Four of the forest sites were discontinuous populations of Pinus muricata and a fifth was a Pinus ponderosa stand in Sierra National Forest. Rhizopogon species were retrieved by bioassaying the soils with pine seedlings followed by isolation of axenic cultures from individual root t...
متن کاملHydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls.
Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability of HR across multiple years in two old...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 178 2 شماره
صفحات -
تاریخ انتشار 2008